

Fundación Chaminade Colegio Parroquial San Miguel Departamento de Ciencias Prof.: Juan Carlos Jiménez Núñez

RESPUESTAS GUÍA DE APRENDIZAJE

FISICA. 2do Medio

"Repaso: Notación científica, conversión de unidades y ecuaciones literales"

NOMBRE: CURSO:

OBJETIVO(S) DE	Reforzar conductas de entrada: notación científica y sus usos, conversión de unidades y aplicaciones, ecuaciones literales.
APRENDIZAJE	de unidades y apricaciones, ecuaciones meraies.
TEMA DEL TRABAJO:	Guía de repaso (Notación científica, conversión de unidades y ecuaciones literales)
ACTIVIDADES DE APLICACIÓN	Desarrollar guía de trabajo individual. (Repaso)
MECANISMO DE EVALUACIÓN AL REGRESAR A CLASES	Entregar la guía desarrollada en hojas tamaño carta (prepicadas).

• INSTRUCCIONES GENERALES:

- 1.- Cada estudiante debe entregar la guía en forma individual. Se debe incluir el desarrollo de cada problema, dejando los resultados con lápiz a pasta (azul o negro).
- 2.- Las respuestas a las preguntas abiertas deben estar con lápiz a pasta (azul o negro), cuidando la argumentación, redacción y ortografía.
- 3.- Puede utilizar los tutoriales de Youtube para reforzar los conceptos y la conversión de unidades.

I ITEM. NOTACION CIENTIFICA:

a) Escriba las siguientes cifras en notación científica.

384.000 m	3,84×10 ⁵ m
150.000.000 km	1,5×10 ⁸ km
6.203,67kg	$6,20367 \times 10^3 \text{kg}$
0,0000000000000000016 kg	1,6×10 ⁻¹⁹ kg
0,0000000000000000000000000000000667 kg	6,67×10 ⁻³¹ kg

b) Resuelva los siguientes ejercicios de operatoria con números en notación científica.

a) $(4.1 \times 10^2) \cdot (2 \times 10^3)$	8,2×10 ⁵
b) (2,52 x 10 ⁻²) : (4,2 x 10 ⁻³)	6×10 ⁰
c) $(6 \times 10^4) \cdot (2.2 \times 10^3)$	1,32×10 ⁸

II ITEM. ECUACIONES LITERALES. Despeje la variable que se indica:

$a)\frac{P}{Q} - L = W; P =$	R: $P/Q = W + L$ P = Q (W + L)
b) $\frac{a+b}{C-t} = R$; $C =$	R: $a + b = R (C - t)$ (a + b)/R = C - t (a + b)/R + t = C
c) $\frac{1}{A} = \frac{1}{B} + \frac{1}{C}$; B =	R: $1/A - 1/C = 1/B$ C - A/AC = 1/B AC/C-A = B
$d) T = \frac{2a\sqrt{L}}{F}; L =$	R: TF /2 a = \sqrt{L} /() ² (TF) ² / 4 a ² = L

III ITEM.CONVERSION DE UNIDADES: Complete la siguiente tabla con las equivalencias que faltan:

km	m	cm	mm
1,75	1.750	175.000	1.750.000
0,0048	4,8	480	4800
1,25	1250	125000	1250000
0,065	65	6500	65000

h	min	S
1,75	105	6300
0,67	40	2400
0,75	45	2700

IV ITEM: APLICACIÓNES DE LOS CAMBIOS DE UNIDADES.

1.- La luz que viaja aproximadamente a 3.0×10^5 km por segundo, tarda cerca de 5.0×10^2 segundos en llegar a la Tierra. ¿Cuál es la distancia aproximada en metros, en notación científica, del Sol a la Tierra?

```
R:

v = d/t; d = v \times t

d = (3 \times 10^5 \text{km//s})(5 \times 10^2 \text{/s})

d = 15 \times 10^7 \text{km}

d = 1,5 \times 10^8 \text{km}; (150 millones de km)
```

2.- La rapidez del sonido en el aire es de 3.31×10^4 centímetros por segundo. Calcula esa rapidez en centímetros por hora (cm/h).

```
R:

v = d/t; v = 3.31 \times 10^4 cm/s; 1h = 3600s; 1s = 1/3600h

v = (3.31 \times 10^4 cm/s)(3600/s/1h)

v = 1.1916 \times 10^8 (cm/h)
```

```
R:

1,67248 \times 10^{-24} g = 1,67248 \times 10^{-27} kg

(1,67248 \times 10^{-27} kg)(10^6) protones

1,67248 \times 10^{-21} kg
```